

العنوان: Pump operating effects on transient fluid flow

المؤلف الرئيسي: Draz, Ahmed Mohamed Mohamed

مؤلفین آخرین: Saad Aldin, Mohamed Safwat، El Negiry, Emad Abd Ellatif، El

Saadany, Hassan Mansour(Super., Assist. Super)

التاريخ الميلادي: 2011

موقع: المنصورة

الصفحات: 223 - 1

رقم MD: 536606

نوع المحتوى: رسائل جامعية

اللغة: English

الدرجة العلمية: رسالة ماجستير

الجامعة: جامعة المنصورة

الكلية: كلية الهندسة

الدولة: مصر

قواعد المعلومات: Dissertations

مواضيع: الهندسة الميكانيكية، السريان الانتقالي

رابط: https://search.mandumah.com/Record/536606

ي 2020 دار المنظومة. جميع الحقوق محفوظة. و

هذه المادة متاحة بناء على الإتفاق الموقع مع أصحاب حقوق النشر، علما أن جميع حقوق النشر محفوظة. يمكنك تحميل أو طباعة هذه المادة للاستخدام الشخصي فقط، ويمنع النسخ أو التحويل أو النشر عبر أي وسيلة (مثل مواقع الانترنت أو البريد الالكتروني) دون تصريح خطي من أصحاب حقوق النشر أو دار المنظومة.

الملخص العربي

ملخص البحث

تحدث ظاهره الطرق المائى فى خطوط الانابيب نتيجه التغير المفاجىء فى سرعه السائل يتبعها تغير مفاجىء فى الضغط، وهى ظاهره ذات آثار مدمره على اجهزه القياس المستخدمه وخطوط الانابيب. بعض الابحاث اخذت فى الاعتبار الارتباط بين جسم الانبوبه والمائع اثناء ظاهره الطرق المائى مع الاهتمام بالحركه المحوريه لجسم الانبوبه وكذلك الاحتكاك على السطح الخارجى للانبوبه، ونتج عن ذلك منظومه الأربع معادلات والتى تم فيها اضافه كل من معادله الحركه لجسم الانبوبه وعلاقه الانفعال لماده جسم الانبوبه بالاضافه الى منظومه المعادلتين و التى تحتوى معادله الاستمراريه ومعادله كميه الحركه للمائع.

من الابحاث السابقه تم الحصول على الحلول العدديه للظاهره والتى اظهرت اهميه تاثير الحركه المحوريه لجسم الانبوبه وقوى الاخماد على السطح الخارجي لها.

وبالرغم من ذلك فان الدراسات السابقه لم تقدم دراسه تحليليه توضح فيها تأثير وجود مضخه في بدايه الانبوبه على مختلف المتغيرات الناتجه عن هذه الظاهره.

فى هذا البحث تم دراسه الارتباط الديناميكى بين جسم الانبوبه والمائع وتاثير وجود المضخه على ظاهره الطرق المائى.

وقد تمت الدراسه من خلال عمل تحليل للمعادلات الحاكمه للظاهره والحصول على المتغيرات المرتبطه بهذه الظاهره اخذه في الاعتبار وجود المضخه في بدايه الانبوبه وذلك باستخدام طريقه المعادلات المميزه (MOC) وايضا تم عمل بعض التجارب لتبرهن على صحه الطرق التحليليه المستخدمه.

ايضا تم استنتاج القيم العظمى لضغط السائل داخل الانبوبه والاجهادات المؤثره على الانبوبه والزمن اللازم لاخماد موجه الضغط والاجهاد وشكل كل منهما وذلك فى ظروف حديه تحاكى منظومه .

الانابيب العمليه و كذلك تم الوصول لبرنامج لحل هذه المعادلات باستخدام الحاسب الالى واختبرت .

من نتائج البحث تم استنتاج اماكن القيم العظمى للضغط والاجهاد على طول الانبوبه وذلك فى ازمنه على مختلفه للمحبس. وقد بينت النتائج مدى التطابق بين النتائج التجريبيه والناتجه من حل منظومه الاربع معادلات عن تلك الناتجه من منظومه المعادلتين.

وبحل منظومه الاربع معادلات يتبين انه في حاله غلق المحبس في زمن اقل من او يساوى $10t_{wp}$ تزداد القيم العظمى للضغط المتولد عن ظاهره الطرق المائى بزياده بعد المسافه عن الطلمبه. اما في حاله غلق المحبس في زمن اكبر من $10t_{wp}$ تكون اقل قيمه للضغط واعلى قيمه للاجهاد كلما اقتربنا من المقاطع المتوسطه من الانبوبه، وهذه المعلومات ستكون مغيده في تصميم خطوط الانابيب اخذين في الاعتبار اقصى اجهاد من الممكن ان تتحمله الانبوبه.

ABSTRACT

Water hammer is the dynamic slam, bang, or shudder that occurs in pipes when a sudden change in fluid velocity creates a significant change in fluid pressure. Water hammer can destroy hydraulic devices and causes pipes and penstocks to rupture.

Water hammer phenomena due to sudden closure of a valve, with centrifugal pump at upstream, are studied both theoretically and experimentally. Also the study is extended theoretically for the case of using tank instead of pump.

Usually, fluid compressibility and pipe elasticity are taken into consideration, which produce a two equations model composed of continuity and fluid momentum equations. In relatively recent publications, interactions between pipe and fluid during water hammer were studied taking into consideration axial pipe motion as well as friction on outside pipe wall. This produces a four equations model, where pipe wall momentum equations as well as stress-strain relations of pipe wall material are considered.

Some numerical results were obtained in previous studies indicating the importance of fluid structure interaction, although a systematic study of the effect of different parameters is still lacking. In the present study, dynamic fluid pipe coupling is analyzed taking into considerations, the outside friction on pipe wall.

The problem is analytically solved using the method of characteristics. This approach helps to clarify, the centrifugal pump effect on the hammering waves, based on the characteristic equations, to estimate the maximum and

ABSTRACT

minimum values of pressure, stress wave, damping time, and hammering wave shape.

Streeter program is developed to solve four equations model to estimate the maximum and minimum values of pressure and stress. Also programs illustrate the position of maximum hammering wave's effect along the pipe line due to change in valve closing time.

Theoretical and experimental results indicate that; for the same condition the maximum pressure resulted from the four equations model is less than resulted from the two equations model.

Also in case of using four equations model with valve closing time less than or equal ten times the wave period, as the distance from the pump increases, the maximum pressure increases, and with valve closing time more than ten times the wave period, the minimum pressure value reaches at the middle sections of the pipe, and the maximum stress values occur at the middle sections of the pipe. This information is useful in pipe design.

Pump operating effects on transient fluid flow العنوان:

> المؤلف الرئيسي: Draz, Ahmed Mohamed Mohamed

Saad Aldin, Mohamed Safwat, El Negiry, Emad Abd Ellatif, El مؤلفين آخرين:

Saadany, Hassan Mansour(Super., Assist. Super)

2011 التاريخ الميلادي:

المنصورة موقع:

1 - 223الصفحات:

536606 رقم MD:

رسائل جامعية نوع المحتوى:

> **English** اللغة:

الدرجة العلمية: رسالة ماجستير

الحامعة: جامعة المنصورة

كلية الهندسة الكلية:

> الدولة: مصر

Dissertations قواعد المعلومات:

الهندسة الميكانيكية، السريان الانتقالي مواضيع:

https://search.mandumah.com/Record/536606 رابط:

© 2020 دار المنظومة. جميع الحقوق محفوظة.

ت ---- در المسود المسيح المحول للمطوعة . هذه المادة متاحة بناء على الإتفاق الموقع مع أصحاب حقوق النشر، علما أن جميع حقوق النشر محفوظة. يمكنك تحميل أو طباعة هذه المادة للاستخدام الشخصي فقط، ويمنع النسخ أو التحويل أو النشر عبر أي وسيلة (مثل مواقع الانترنت أو البريد الالكتروني) دون تصريح خطي من أصحاب حقوق النشر أو دار المنظومة.

Subject	Page
ACKNOWLEDGMENT	I
ABSTRACT	П
CONTENTS	IV
LIST OF FIGURES	X
LIST OF TABLES	XIX
NOMENCLATURE	XX
ABBREVIATIONS	XXIII
Chapter 1. INTRODUCTION	1
1-1 Water Hammer Definition	1
1-2 Water Hammer Mechanism	2
1-2-1 Classic water hammer mechanism	2
1-2-2 Fluid-structure interaction mechanism	5
1-3 Causes of Water Hammer	6
1-4 Failure Caused by Water Hammer	7
1-5 Water Hammer Analyzing Methods	8
1-5-1 Arithmetic method	9
1-5-2 Graphical method	10
1-5-3 Method of characteristics	10
1-5-4 Algebraic method	10

1-5-5 Implicit method	11
1-5-6 Linear analysis method	11
1-6 Water Hammer Prevention	13
1-7 Design Alternatives	13
1-8 Thesis Organization	14
Chapter2. LITERATURE REVIEW	16
2-1 Introduction	16
2-2 Literature Review	16
2-2-1 Two- equations modeling	17
2-2-2 Four- equations modeling	26
2-3 Aim of the present work	36
Chapter 3. MATHEMATICAL FORMULATION	38
3-1 Introduction	38
3-2 Mathematical Modeling	39
3-2-1 Assumptions of mathematical modeling	40
3-3 Two Equations Model Mathematical Formulation	42
3-3-1 Two equations model	42
3-3-2 Solution of two equations model	43

CONTENTS	
3-3-3 Boundary conditions of two equations model	48
3-4 Four Equations Model Mathematical Formulation	51
3-4-1 Four equations model	51
3-4-2 Four equations model solution	55
3-4-3 Boundary conditions of four equations model	61
3-4-3-1 upstream boundary conditions	61
3-4-3-2 downstream boundary conditions	68
3-5 Initial Conditions	76
3-6 Comparison between Two Equations and Four Equations Models	77
Chapter4. EXPERMINTAL SET-UP	79
4-1 Introduction	79
4-2 Experimental Test-Reg	79
4-2-1 Water supply unite	81
4-2-2 Test section	83
4-2-3 Hammering generation mechanism	83
4-2-4 Measuring devices	85
4-3 Calibration of the Measuring Devices	87
4-3-1 Pressure transducer calibration	87
4-3-2 Calibration of the bourdon tube gauge	89

4-4 Experimental Procedure	93
Chapter 5. RESULTS AND DISCUSIONS	95
5-1 Program Validation	95
5-2 Pressure-Time Variations Analysis	96
5-2-1 Theoretical results using tank	96
5-2-2 Theoretical results using pump	96
5-2-3 Comparison between two equations and four equations models	
	105
5-3 Stress-Time Variation Analysis	107
5-3-1The case of using pump	107
5-3-2The case of using tank	109
5-4 Fluid Velocity –Time Variation Analysis	113
5-4-1The case of using pump	113
5-4-2The case of using tank	115
5-5 Structure Velocity-Time Variation Analysis	121
5-6 Experimental Results	125
5-7 Comparison between the Results of Two Equations Model,	
Four Equations Model and the Experimental Results	129

CON	TEN	TS
CUL		

Chapter 6. CONCLUSIONS AND RECOMMENDIATION	131
6-1 Conclusions	131
6-2 Recommendations	132
REFERENCES	134
APPENDICES	140
Appendix[A]	140
Basic water hammer program, with reservoir at upstream end,	
valve at downstream end, using two equations model, and solved example.	
Appendix[B]	142
Basic water hammer program, with centrifugal pump at upstream end,	
valve at downstream end, using two equations model, and solved example.	
Appendix[C]	144
Basic water hammer program, with reservoir at upstream end,	
valve at downstream end, and using four equations model.	
Appendix[D]	149
Basic water hammer program, with centrifugal pump at upstream end,	
and valve at downstream end, which use four equations model.	
Appendix[E]	156

CO	NT	TE:	V	rs.

Predicted pressure ratio-time history at different positions along the pipe, with different closing time using tank at upstream end. 161 Appendix[F] Predicted stress-time history at different positions along the pipe, with different closing time, using tank at upstream end. 164 Appendix[G] Predicted fluid velocity-time history at different positions along the pipe, with different closing time, using tank at upstream end. Appendix[H] 169 Predicted structure velocity-time history at different positions along the pipe, with different closing time, using tank at upstream end. **ARABIC SUMMARY** 172

LIST OF FIGURES

Figure. No	. Title	Page
1-1	Sequence of events for one period after sudden closure	
	of the valve	4
1-2	Transient in x-t plane	5
1-3	Application of arithmetic water hammer equations to a single pipe	10
3-1	Characteristic lines in the x-t plane	46
3-2	x-t grid for solving single-pipe problem (two equations model)	47
3-3	Characteristic at boundaries (two equations model) a- Characteristic line at upstream end	
	b- Characteristic line at downstream end	49
3-4	x-t grid for solving single-pipe problem (four equations model)	61
3-5-a	x-t grid for solving single-pipe problem (four equations model)	
	at point (N=1)	62
3-5-b	x-t grid for solving single-pipe problem (four equations model)	
	at point (N=2)	64
3-5-с	x-t grid for solving single-pipe problem (four equations model)	
	at point (N=3)	66
3-6-a	x-t grid for solving single-pipe problem (four equations model)	

CON	IENIS	
	at point (N _s)	71
3-6-b	x-t grid for solving single-pipe problem (four equations model)	
	at point (N _s -1)	72
3-6-с	x-t grid for solving single-pipe problem (four equations model)	
	at point (N _s -2)	74
4-1	Experimental model	80
4-2	The H-Q curve for the tested pump	82
4-3	Closing time measuring circuit	84
4-4	Pressure transducer circuit	86
4-5	Pressure transducer calibration circuit	88
4-6	Sensor volts to pressure curve for sensor (0:5 bar)	88
4-7	Circuit used to calibrate sensor and gauge with load piston	91
4-8	Calibration procedure	91
4-9	Pressure gauge related to load piston calculated pressure	92
4-10	3-Way cock valve (3-Way rotational control valve)	93
5-1	Predicted pressure-time history at three positions along the pipe,	
	at $t_c = t_{wp}$, by 2-Eqs model using pump	100
5-2	Predicted pressure-time history at three positions along the pipe,	
	at $t_c = t_{wp}$, by 4-Eqs model using pump	100

5-3	Predicted pressure-time history at three positions along the pipe,	
	at $t_c=2t_{wp}$, by 2-Eqs model using Pump	101
5-4	Predicted pressure-time history at three positions along the pipe,	
	at $t_c=2t_{wp}$, by 4-Eqs model using pump	101
5-5	Predicted pressure-time history at three positions along the pipe,	
	at $t_c=10t_{wp}$, by 2-Eqs model using pump	102
5-6	Predicted pressure-time history at three positions along the pipe,	
	at $t_c=10t_{wp}$, by 4-Eqs model using pump	102
5-7	Predicted pressure-time history at three positions along the pipe,	•
	at $t_c=20t_{wp}$, by 2-Eqs model using pump	103
5-8	Predicted pressure-time history at three positions along the pipe,	
	at $t_c=20t_{wp}$, by 4-Eqs model using pump	103
5-9	Predicted pressure-time history at three positions along the pipe,	
	at $t_c=40t_{wp}$, by 2-Eqs model using pump	104
5-10	Predicted pressure-time history at three positions along the pipe,	
	at $t_c=40t_{wp}$, by 4-Eqs model using pump	104
5-11	Maximum pressure variation with distance at different valve closis	ng time
		105
5-12	Predict stress-time history at three positions along pipe, at $t_c = t_{wp}$,	
	By 4-Eqs model using pump	110

CON	LENTS	
5-13	Predict stress-time history at three positions along pipe, at $t_c=2$	t_{wp} ,
	By 4-Eqs model using pump	110
5-14	Predict stress-time history at three positions along pipe, at t_c =	$10t_{wp}$,
	by 4-Eqs model using pump	111
5-15	Predict stress-time history at three positions along pipe, at t_c =	$=20t_{wp},$
	by 4-Eqs model using pump	111
5-16	Predict stress-time history at three positions along pipe, at t_c =	$=40t_{wp},$
	by 4-Eqs model using pump	112
5-17	Maximum stress variation with distance at different valve clos	ing time
		113
5-18	Predict fluid velocity-time history at three positions along pip	e,
	at $t_c = t_{wp}$, by 2-Eqs model using pump	116
5-19	Predict fluid velocity-time history at three positions along pip	e,
	at $t_c = t_{wp}$, by 4-Eqs model using pump	116
5-20	Predict fluid velocity-time history at three positions along pip	e, at
	$t_c=2t_{wp}$, by 2-Eqs model using pump	117
5-21	Predict fluid velocity-time history at three positions along pip	e, at
	$t_c=2t_{wp}$, by 4-Eqs model using pump	117
5-22	Predict fluid velocity-time history at three positions along pip	e, at
	$t_c=10t_{wp}$, by 2-Eqs model using pump	118

5-23	Predict fluid velocity-time history at three positions along pipe, at	. =
	$t_c=10t_{wp}$, by 4-Eqs model using pump	118
5-24	Predict fluid velocity-time history at three positions along pipe, at	
	$t_c=20t_{wp}$, by 2-Eqs model using pump	119
5-25	Predict fluid velocity-time history at three positions along pipe, at	
	$t_c=20t_{wp}$, by 4-Eqs model using pump	119
5-26	Predict fluid velocity-time history at three positions along pipe, at	
	t_c =40 t_{wp} , by2-Eqs model using pump	120
5-27	Predict fluid velocity-time history at three positions along pipe, at	
	t_c =40 t_{wp} , by4-Eqs model using pump	120
5-28	Predict structure velocity-time history at three positions along pip	e,
	at $t_c = t_{wp}$ by 4-Eqs model, using pump	122
5-29	Predict structure velocity -time history at three positions along pi	pe,
	at $t_c=2t_{wp}$, by 4-Eqs model using pump	122
5-30	Predict structure velocity-time history at three positions along pip	e,
	at $t_c=10t_{wp}$, by 4-Eqs model, using pump	123
5-31	Predict structure velocity -time history at three positions along pi	pe,
	at $t_c=20t_{wp}$, by 4-Eqs model using pump	123
5-32	Predict structure velocity-time history at three positions along pip	e,

COM	LENIS	
	at $t_c=40t_{wp}$, by 4-Eqs model with pump	124
5-33	Experiments pressure-time history at three positions along the	
	pipe at $t_c = t_{wp}$, with pump and fixed clamps	127
5-34	Experiments pressure-time history at three positions along the	
	pipe, at $t_c=20t_{wp}$, with pump and fixed clamps	127
5-35	Experiments pressure-time history at three positions along the	
	pipe, at $t_c=40t_{wp}$, with pump and fixed clamps	128
5-36	Experiments pressure-time history at three positions along the	
	pipe, at $t_c=40t_{wp}$, with pump, and fixed free	129
A- 1	Pressure-time history for solved example (for the tank)	140
B-1	Pressure-time curve for solved example (for the pump)	142
E-1	Predicted pressure-time history at three positions along the pipe,	
	at $t_c = t_{wp}$, by 2-Eqs model using tank	156
E-2	Predicted pressure-time history at three positions along the pipe,	
	at $t_c = t_{wp}$, by 4-Eqs model using tank	156
E-3	Predicted pressure -time history at three positions along the pipe,	
	at $t_c=2t_{wp}$, by 2-Eqs model using tank	157
E-4	Predicted pressure -time history at three positions along the pipe,	
	at $t_c=2t_{wp}$, by 4-Eqs model using tank	157

E-5	Predicted pressure -time history at three positions along the pipe,	
	at $t_c=10t_{wp}$, by 2-Eqs model using tank	158
E-6	Predicted pressure-time history at three positions along the pipe,	
	at $t_c=10t_{wp}$, by 4-Eqs model using tank	158
E-7	Predicted pressure-time history at three positions along the pipe,	
	at $t_c=20t_{wp}$, by 2-Eqs model using tank	159
E-8	Predicted pressure-time history at three positions along the pipe,	
	at $t_c=20t_{wp}$, by 4-Eqs model using tank	159
E-9	Predicted pressure-time history at three positions along the pipe,	
	at t_c =40 t_{wp} , by 2-Eqs model using tank	160
E-10	Predicted pressure-time history at three positions along the pipe,	
	at $t_c=40t_{wp}$, by 4-Eqs model using tank	160
F-1	Predicted stress-time history at three positions along the pipe,	
	at $t_c = t_{wp}$, by 4-Eqs model using tank	161
F-2	Predict stress-time history at three positions along the pipe,	
	at $t_c=2t_{wp}$, by 4-Eqs model using tank	161
F-3	Predict stress-time history at three positions along the pipe,	
	at $t_c=10t_{wp}$, by 4-Eqs model using tank	162
F-4	Predict stress-time history at three positions along pipe,	

CON	IENIS	
	at $t_c=20t_{wp}$, by 4-Eqs model using tank	162
F-5	Predict stress-time history at three positions along pipe,	
	at $t_c = 40t_{wp}$, by 4-Eqs model using tank	163
G-1	Predict fluid velocity-time history at three positions along pipe,	
	at $t_c = t_{wp}$, by 2-Eqs model using tank	164
G-2	Predict fluid velocity-time history at three positions along pipe,	
	at $t_c = t_{wp}$, by 4-Eqs model using tank	164
G-3	Predict fluid velocity-time history at three positions along pipe,	
	at $t_c=2t_{wp}$, by 2-Eqs model using tank	165
G-4	Predict fluid velocity-time history at three positions along pipe,	
	at $t_c=2t_{wp}$, by 4-Eqs model using pump	165
G-5	Predict fluid velocity-time history at three positions along pipe,	
	at $t_c=10t_{wp}$, by 2-Eqs model using tank	166
G-6	Predict fluid velocity-time history at three positions along pipe,	
	at $t_c=10t_{wp}$, by 4-Eqs model using tank	166
G-7	Predict fluid velocity-time history at three positions along pipe,	
	at $t_c=20t_{wp}$, by 2-Eqs model using tank	167
G-8	Predict fluid velocity-time history at three positions along pipe,	
	at $t_c=20t_{wp}$, by 4-Eqs model using tank	167

CO	N	JT	Tr.	N	TS
		•	.,		

COM	ENTS	
G-9	Predict fluid velocity-time history at three positions along pipe,	
	at t_c =40 t_{wp} , by2-Eqs model using tank	168
G-10	Predict fluid velocity-time history at three positions along pipe,	at
	t_c =40 t_{wp} , by4-Eqs model using tank	168
H-1	Predict structure velocity-time history at three positions along p	pipe,
	at $t_c = t_{wp}$ by 4-Eqs model, using tank	169
H-2	Predict structure velocity -time history at three positions along	pipe,
	at $t_c=2t_{wp}$, by 4-Eqs model using tank	169
H-3	Predict structure velocity-time history at three positions along p	pipe,
	at $t_c=10t_{wp}$, by 4-Eqs model, using pump	170
H-4	Predict Structure velocity -time history at three positions along	pipe,
	at $t_c=20t_{wp}$, by 4-Eqs model using pump	170
H-5	Predict structure velocity-time history at three positions along	pipe,
	at $t_c=40t_{wp}$, by 4-Eqs model with pump	171

العنوان: Pump operating effects on transient fluid flow

المؤلف الرئيسي: Draz, Ahmed Mohamed Mohamed

مؤلفین آخرین: Saad Aldin, Mohamed Safwat، El Negiry, Emad Abd Ellatif، El

Saadany, Hassan Mansour(Super., Assist. Super)

التاريخ الميلادي: 2011

موقع: المنصورة

الصفحات: 223 - 1

رقم MD: 536606

نوع المحتوى: رسائل جامعية

اللغة: English

الدرجة العلمية: رسالة ماجستير

الجامعة: جامعة المنصورة

الكلية: كلية الهندسة

الدولة: مصر

قواعد المعلومات: Dissertations

مواضيع: الهندسة الميكانيكية، السريان الانتقالي

رابط: https://search.mandumah.com/Record/536606

© 2020 دار المنظومة. جميع الحقوق محفوظة. هذه المادة متاحة بناء على الإتفاق الموقع مع أصحاب حقوق النشر، علما أن جميع حقوق النشر محفوظة. يمكنك تحميل أو طباعة هذه المادة للاستخدام الشخصي فقط، ويمنع النسخ أو التحويل أو النشر عبر أي وسيلة (مثل مواقع الانترنت أو البريد الالكتروني) دون تصريح خطي من أصحاب حقوق النشر أو دار المنظومة.

Mansoura University Faculty of Engineering Mechanical Power Engineering Department

PUMP OPERATING EFFECTS ON TRANSIENT FLUID FLOW

Submitted in Partial Fulfillment of Requirements for the Master of Science in Mechanical Power Engineering

By

Eng. Ahmed Mohamed Mohamed Draz
B. Sc. of Mechanical Power Engineering
Faculty of Engineering
Mansoura University

Under Supervision of

Prof. Dr. Hassan Mansour El Saadany Mechanical Power Engineering Dept. Faculty of Engineering Mansoura University Prof. Dr. Mohamed Safwat Saad El Din Head of Mechanical Power Engineering Dept. Faculty of Engineering Mansoura University

Dr. Emad Abd El Latif El Negiry Mechanical Power Engineering Dept. Faculty of Engineering Mansoura University

Mansoura University Faculty of Engineering Mechanical Power Engineering Department

PUMP OPERATING EFFECTS ON TRANSIENT FLUID FLOW

Submitted in Partial Fulfillment of Requirements for the Master of Science in Mechanical Power Engineering

By

Eng. Ahmed Mohamed Draz

B. Sc. of Mechanical Power Engineering
Faculty of Engineering
Mansoura University

Under Supervision of

Prof. Dr. Hassan Mansour El Saadany

Mechanical Power Engineering Dept.
Faculty of Engineering
Mansoura University

Prof. Dr. Mohamed Safwat Saad El Din Head of Mechanical Power Engineering Dept. Faculty of Engineering Mansoura University

Dr. Emad Abd El Latif El Negiry

Mechanical Power Engineering Dept.
Faculty of Engineering
Mansoura University

Supervisor

Mansoura University
Faculty of Engineering
Mechanical Power Engineering Dept.

Research title: PUMP OPERATING EFFECTS ON TRANSIENT FLUID FLOW

Researcher name: Ahmed Mohamed Mohamed Draz Scientific degree: M.Sc. in Mechanical Power Engineering

Supervisor committee

Name	Position	Signature
Prof. Dr. Hassan Mansour El Saadany	Prof. in Mechanical Power Engineering Dept. Faculty of Engineering	
	Mansoura University	M-Manse
Prof. Dr. Mohamed Safwat Saad El Din	Head of Mechanical Power Engineering Dept. Faculty of Engineering Mansoura University	M Safuro
Dr. Emad Abd El Latif El Negiry	Dr. in Mechanical Power Engineering Dept. Faculty of Engineering Mansoura University	MWN

Head of Department

M. Sahwat

Prof. Dr. Mohamed Safwat Saad El Din

Vice Dean for Post graduate Studies and Researches

2 2011

Prof. Dr. Kassem Salah El-alfy

Dean of the Faculty

Prof. Dr. Adel Ahmed Dif

25022

Examining Committee

Mansoura University
Faculty of Engineering
Mechanical Power Engineering Dept.

Research title: PUMP OPERATING EFFECTS ON TRANSIENT

FLUID FLOW

Researcher name: Ahmed Mohamed Mohamed Draz Scientific degree: M.Sc. in Mechanical Power Engineering

Supervisor committee

Name	Position	Signature
Prof. Dr. Hassan Mansour El Saadany	Prof. in Mechanical Power Engineering Dept. Faculty of Engineering Mansoura University	H. Marso
Prof. Dr. Mohamed Safwat Saad El Din	Head of Mechanical Power Engineering Dept. Faculty of Engineering Mansoura University	M. Safwa
Dr. Emad Abd El Latif El Negiry	Dr. in Mechanical Power Engineering Dept. Faculty of Engineering Mansoura University	5 mil

Examining Committee

Name	Position	Signature
Prof. Dr. Sadek Zakaria	Prof in Mechanical Power Engineering Dept	Signature
Kassab	Faculty of Engineering Alexandria University	
	Alexandria University	185 ab
Prof. Dr. Lotfey Hassan	Prof in Mechanical Power Engineering Dept.	
Rabeaa	Faculty of Engineering	1
	Mansoura University	
Prof. Dr. Hassan Mansour	Prof in Mechanical Power Engineering Dept.	
El Saadany	Faculty of Engineering	Hillansor
	Mansoura University	
Prof. Dr. Mohamed Safwat	Head of Mechanical Power Engineering Dept.	
Saad El Din	Faculty of Engineering	11.611
	Mansoura University	" after

Head of Department

M. Safwat

Prof. Dr. Mohamed Safwat Saad El Din

Vice Dean for Post graduate Studies and Researches

26.5. [201]

Prof. Dr. Kassem Salah El-alfy

Dean of the Faculty

Prof. Dr. Adel Ahmed Dif

1750mg

ACKNOWLEDGEMENT

First and foremost, I thank **ALLAH**, the most Merciful and the most Gracious.

I would like to express my sincere gratitude to *Prof. Dr. Hassan*Mansour El Saadany, whose guidance and sincere supervision were
the cornerstone in the building up of this research.

I would also like to express my gratitude and sincere thanks to **Prof. Dr. Mohamed Safwat Saad El Din** for his keen supervision and advice.

Also I would like to express my gratitude and sincere thanks to **Dr. Emad Abd El Latif El Negiry** for his help, cooperation and encouragement.

At last I would like to thank all my family for their support during the development of this study.

Ahmed Draz

ABSTRACT

Water hammer is the dynamic slam, bang, or shudder that occurs in pipes when a sudden change in fluid velocity creates a significant change in fluid pressure. Water hammer can destroy hydraulic devices and causes pipes and penstocks to rupture.

Water hammer phenomena due to sudden closure of a valve, with centrifugal pump at upstream, are studied both theoretically and experimentally. Also the study is extended theoretically for the case of using tank instead of pump.

Usually, fluid compressibility and pipe elasticity are taken into consideration, which produce a two equations model composed of continuity and fluid momentum equations. In relatively recent publications, interactions between pipe and fluid during water hammer were studied taking into consideration axial pipe motion as well as friction on outside pipe wall. This produces a four equations model, where pipe wall momentum equations as well as stress-strain relations of pipe wall material are considered.

Some numerical results were obtained in previous studies indicating the importance of fluid structure interaction, although a systematic study of the effect of different parameters is still lacking. In the present study, dynamic fluid pipe coupling is analyzed taking into considerations, the outside friction on pipe wall.

The problem is analytically solved using the method of characteristics. This approach helps to clarify, the centrifugal pump effect on the hammering waves, based on the characteristic equations, to estimate the maximum and

ABSTRACT

minimum values of pressure, stress wave, damping time, and hammering wave shape.

Streeter program is developed to solve four equations model to estimate the maximum and minimum values of pressure and stress. Also programs illustrate the position of maximum hammering wave's effect along the pipe line due to change in valve closing time.

Theoretical and experimental results indicate that; for the same condition the maximum pressure resulted from the four equations model is less than resulted from the two equations model.

Also in case of using four equations model with valve closing time less than or equal ten times the wave period, as the distance from the pump increases, the maximum pressure increases, and with valve closing time more than ten times the wave period, the minimum pressure value reaches at the middle sections of the pipe, and the maximum stress values occur at the middle sections of the pipe. This information is useful in pipe design.

Subject	Page
ACKNOWLEDGMENT	I
ABSTRACT	П
CONTENTS	IV
LIST OF FIGURES	X
LIST OF TABLES	XIX
NOMENCLATURE	XX
ABBREVIATIONS	XXIII
Chapter 1. INTRODUCTION	1
1-1 Water Hammer Definition	1
1-2 Water Hammer Mechanism	2
1-2-1 Classic water hammer mechanism	2
1-2-2 Fluid-structure interaction mechanism	5
1-3 Causes of Water Hammer	6
1-4 Failure Caused by Water Hammer	7
1-5 Water Hammer Analyzing Methods	8
1-5-1 Arithmetic method	9
1-5-2 Graphical method	10
1-5-3 Method of characteristics	10
1-5-4 Algebraic method	10

COLLEGE	
1-5-5 Implicit method	11
1-5-6 Linear analysis method	11
1-6 Water Hammer Prevention	13
1-7 Design Alternatives	13
1-8 Thesis Organization	14
Chapter2. LITERATURE REVIEW	16
2-1 Introduction	16
2-2 Literature Review	16
2-2-1 Two- equations modeling	17
2-2-2 Four- equations modeling	26
2-3 Aim of the present work	36
Chapter 3. MATHEMATICAL FORMULATION	38
3-1 Introduction	38
3-2 Mathematical Modeling	39
3-2-1 Assumptions of mathematical modeling	40
3-3 Two Equations Model Mathematical Formulation	42
3-3-1 Two equations model	42
3-3-2 Solution of two equations model	43

CONTENTS	
3-3-3 Boundary conditions of two equations model	48
3-4 Four Equations Model Mathematical Formulation	51
3-4-1 Four equations model	51
3-4-2 Four equations model solution	55
3-4-3 Boundary conditions of four equations model	61
3-4-3-1 upstream boundary conditions	61
3-4-3-2 downstream boundary conditions	68
3-5 Initial Conditions	76
3-6 Comparison between Two Equations and Four Equations Models	77
Chapter4. EXPERMINTAL SET-UP	79
4-1 Introduction	79
4-2 Experimental Test-Reg	79
4-2-1 Water supply unite	81
4-2-2 Test section	83
4-2-3 Hammering generation mechanism	83
4-2-4 Measuring devices	85
4-3 Calibration of the Measuring Devices	87
4-3-1 Pressure transducer calibration	87
4-3-2 Calibration of the bourdon tube gauge	89

4-4 Experimental Procedure	93
Chapter 5. RESULTS AND DISCUSIONS	95
5-1 Program Validation	95
5-2 Pressure-Time Variations Analysis	96
5-2-1 Theoretical results using tank	96
5-2-2 Theoretical results using pump	96
5-2-3 Comparison between two equations and four equations models	
	105
5-3 Stress-Time Variation Analysis	107
5-3-1The case of using pump	107
5-3-2The case of using tank	109
5-4 Fluid Velocity –Time Variation Analysis	113
5-4-1The case of using pump	113
5-4-2The case of using tank	115
5-5 Structure Velocity-Time Variation Analysis	121
5-6 Experimental Results	125
5-7 Comparison between the Results of Two Equations Model,	
Four Equations Model and the Experimental Results	129

CON	TEN	TS
CUL		

Chapter 6. CONCLUSIONS AND RECOMMENDIATION	131
6-1 Conclusions	131
6-2 Recommendations	132
REFERENCES	134
APPENDICES	140
Appendix[A]	140
Basic water hammer program, with reservoir at upstream end,	
valve at downstream end, using two equations model, and solved example.	
Appendix[B]	142
Basic water hammer program, with centrifugal pump at upstream end,	
valve at downstream end, using two equations model, and solved example.	
Appendix[C]	144
Basic water hammer program, with reservoir at upstream end,	
valve at downstream end, and using four equations model.	
Appendix[D]	149
Basic water hammer program, with centrifugal pump at upstream end,	
and valve at downstream end, which use four equations model.	
Appendix[E]	156

CO	ħ	JΠ	TIP.	N	TC
			F.	1 🔻	

Predicted pressure ratio-time history at different positions along the pipe, with different closing time using tank at upstream end. 161 Appendix[F] Predicted stress-time history at different positions along the pipe, with different closing time, using tank at upstream end. 164 Appendix[G] Predicted fluid velocity-time history at different positions along the pipe, with different closing time, using tank at upstream end. Appendix[H] 169 Predicted structure velocity-time history at different positions along the pipe, with different closing time, using tank at upstream end. **ARABIC SUMMARY** 172

LIST OF FIGURES

Figure.	. Title	Page
1-1	Sequence of events for one period after sudden closure	
	of the valve	4
1-2	Transient in x-t plane	5
1-3	Application of arithmetic water hammer equations to a single pipe	10
3-1	Characteristic lines in the x-t plane	46
3-2	x-t grid for solving single-pipe problem (two equations model)	47
3-3	Characteristic at boundaries (two equations model) a- Characteristic line at upstream end	
	b- Characteristic line at downstream end	49
3-4	x-t grid for solving single-pipe problem (four equations model)	61
3-5-a	x-t grid for solving single-pipe problem (four equations model)	
	at point (N=1)	62
3-5-b	x-t grid for solving single-pipe problem (four equations model)	
	at point (N=2)	64
3-5-с	x-t grid for solving single-pipe problem (four equations model)	
	at point (N=3)	66
3-6-a	x-t grid for solving single-pipe problem (four equations model)	

CON	IENIS	
	at point (N _s)	71
3-6-b	x-t grid for solving single-pipe problem (four equations model)	
	at point (N _s -1)	72
3-6-с	x-t grid for solving single-pipe problem (four equations model)	
	at point (N _s -2)	74
4-1	Experimental model	80
4-2	The H-Q curve for the tested pump	82
4-3	Closing time measuring circuit	84
4-4	Pressure transducer circuit	86
4-5	Pressure transducer calibration circuit	88
4-6	Sensor volts to pressure curve for sensor (0:5 bar)	88
4-7	Circuit used to calibrate sensor and gauge with load piston	91
4-8	Calibration procedure	91
4-9	Pressure gauge related to load piston calculated pressure	92
4-10	3-Way cock valve (3-Way rotational control valve)	93
5-1	Predicted pressure-time history at three positions along the pipe,	
	at $t_c = t_{wp}$, by 2-Eqs model using pump	100
5-2	Predicted pressure-time history at three positions along the pipe,	
	at $t_c = t_{wp}$, by 4-Eqs model using pump	100

5-3	Predicted pressure-time history at three positions along the pipe,	
	at $t_c=2t_{wp}$, by 2-Eqs model using Pump	101
5-4	Predicted pressure-time history at three positions along the pipe,	
	at $t_c=2t_{wp}$, by 4-Eqs model using pump	101
5-5	Predicted pressure-time history at three positions along the pipe,	
	at $t_c=10t_{wp}$, by 2-Eqs model using pump	102
5-6	Predicted pressure-time history at three positions along the pipe,	
	at $t_c=10t_{wp}$, by 4-Eqs model using pump	102
5-7	Predicted pressure-time history at three positions along the pipe,	
	at $t_c=20t_{wp}$, by 2-Eqs model using pump	103
5-8	Predicted pressure-time history at three positions along the pipe,	
	at $t_c=20t_{wp}$, by 4-Eqs model using pump	103
5-9	Predicted pressure-time history at three positions along the pipe,	
	at $t_c=40t_{wp}$, by 2-Eqs model using pump	104
5-10	Predicted pressure-time history at three positions along the pipe,	
	at $t_c=40t_{wp}$, by 4-Eqs model using pump	104
5-11	Maximum pressure variation with distance at different valve closis	ng time
		105
5-12	Predict stress-time history at three positions along pipe, at $t_c = t_{wp}$,	
	By 4-Eqs model using pump	110

CON	LENTS		
5-13	Predict stress-time history at three positions along pipe, at $t_c=2t_{wp}$,		
	By 4-Eqs model using pump	110	
5-14	Predict stress-time history at three positions along pipe, at t_c =	$10t_{wp}$,	
	by 4-Eqs model using pump	111	
5-15	Predict stress-time history at three positions along pipe, at t_c =	$=20t_{wp},$	
	by 4-Eqs model using pump	111	
5-16	Predict stress-time history at three positions along pipe, at t_c =	$=40t_{wp},$	
	by 4-Eqs model using pump	112	
5-17	Maximum stress variation with distance at different valve clos	ing time	
		113	
5-18	Predict fluid velocity-time history at three positions along pip	e,	
	at $t_c = t_{wp}$, by 2-Eqs model using pump	116	
5-19	Predict fluid velocity-time history at three positions along pip	e,	
	at $t_c = t_{wp}$, by 4-Eqs model using pump	116	
5-20	Predict fluid velocity-time history at three positions along pip	e, at	
	$t_c=2t_{wp}$, by 2-Eqs model using pump	117	
5-21	Predict fluid velocity-time history at three positions along pip	e, at	
	$t_c=2t_{wp}$, by 4-Eqs model using pump	117	
5-22	Predict fluid velocity-time history at three positions along pip	e, at	
	$t_c=10t_{wp}$, by 2-Eqs model using pump	118	

5-23	Predict fluid velocity-time history at three positions along pipe, at	. =
	$t_c=10t_{wp}$, by 4-Eqs model using pump	118
5-24	Predict fluid velocity-time history at three positions along pipe, at	
	$t_c=20t_{wp}$, by 2-Eqs model using pump	119
5-25	Predict fluid velocity-time history at three positions along pipe, at	
	$t_c=20t_{wp}$, by 4-Eqs model using pump	119
5-26	Predict fluid velocity-time history at three positions along pipe, at	
	t_c =40 t_{wp} , by2-Eqs model using pump	120
5-27	Predict fluid velocity-time history at three positions along pipe, at	
	t_c =40 t_{wp} , by4-Eqs model using pump	120
5-28	Predict structure velocity-time history at three positions along pip	e,
	at $t_c = t_{wp}$ by 4-Eqs model, using pump	122
5-29	Predict structure velocity -time history at three positions along pi	pe,
	at $t_c=2t_{wp}$, by 4-Eqs model using pump	122
5-30	Predict structure velocity-time history at three positions along pip	e,
	at $t_c=10t_{wp}$, by 4-Eqs model, using pump	123
5-31	Predict structure velocity -time history at three positions along pi	pe,
	at $t_c=20t_{wp}$, by 4-Eqs model using pump	123
5-32	Predict structure velocity-time history at three positions along pip	e,

COM	LENIS	
	at $t_c=40t_{wp}$, by 4-Eqs model with pump	124
5-33	Experiments pressure-time history at three positions along the	
	pipe at $t_c = t_{wp}$, with pump and fixed clamps	127
5-34	Experiments pressure-time history at three positions along the	
	pipe, at $t_c=20t_{wp}$, with pump and fixed clamps	127
5-35	Experiments pressure-time history at three positions along the	
	pipe, at $t_c=40t_{wp}$, with pump and fixed clamps	128
5-36	Experiments pressure-time history at three positions along the	
	pipe, at $t_c=40t_{wp}$, with pump, and fixed free	129
A- 1	Pressure-time history for solved example (for the tank)	140
B-1	Pressure-time curve for solved example (for the pump)	142
E-1	Predicted pressure-time history at three positions along the pipe,	
	at $t_c = t_{wp}$, by 2-Eqs model using tank	156
E-2	Predicted pressure-time history at three positions along the pipe,	
	at $t_c = t_{wp}$, by 4-Eqs model using tank	156
E-3	Predicted pressure -time history at three positions along the pipe,	
	at $t_c=2t_{wp}$, by 2-Eqs model using tank	157
E-4	Predicted pressure -time history at three positions along the pipe,	
	at $t_c=2t_{wp}$, by 4-Eqs model using tank	157

E-5	Predicted pressure -time history at three positions along the pipe,	
	at $t_c=10t_{wp}$, by 2-Eqs model using tank	158
E-6	Predicted pressure-time history at three positions along the pipe,	
	at $t_c=10t_{wp}$, by 4-Eqs model using tank	158
E-7	Predicted pressure-time history at three positions along the pipe,	
	at $t_c=20t_{wp}$, by 2-Eqs model using tank	159
E-8	Predicted pressure-time history at three positions along the pipe,	
	at $t_c=20t_{wp}$, by 4-Eqs model using tank	159
E-9	Predicted pressure-time history at three positions along the pipe,	
	at t_c =40 t_{wp} , by 2-Eqs model using tank	160
E-10	Predicted pressure-time history at three positions along the pipe,	
	at $t_c=40t_{wp}$, by 4-Eqs model using tank	160
F-1	Predicted stress-time history at three positions along the pipe,	
	at $t_c = t_{wp}$, by 4-Eqs model using tank	161
F-2	Predict stress-time history at three positions along the pipe,	
	at $t_c=2t_{wp}$, by 4-Eqs model using tank	161
F-3	Predict stress-time history at three positions along the pipe,	
	at $t_c=10t_{wp}$, by 4-Eqs model using tank	162
F-4	Predict stress-time history at three positions along pipe,	

CON	IENIS	
	at $t_c=20t_{wp}$, by 4-Eqs model using tank	162
F-5	Predict stress-time history at three positions along pipe,	
	at $t_c = 40t_{wp}$, by 4-Eqs model using tank	163
G-1	Predict fluid velocity-time history at three positions along pipe,	
	at $t_c = t_{wp}$, by 2-Eqs model using tank	164
G-2	Predict fluid velocity-time history at three positions along pipe,	
	at $t_c = t_{wp}$, by 4-Eqs model using tank	164
G-3	Predict fluid velocity-time history at three positions along pipe,	
	at $t_c=2t_{wp}$, by 2-Eqs model using tank	165
G-4	Predict fluid velocity-time history at three positions along pipe,	
	at $t_c=2t_{wp}$, by 4-Eqs model using pump	165
G-5	Predict fluid velocity-time history at three positions along pipe,	
	at $t_c=10t_{wp}$, by 2-Eqs model using tank	166
G-6	Predict fluid velocity-time history at three positions along pipe,	
	at $t_c=10t_{wp}$, by 4-Eqs model using tank	166
G-7	Predict fluid velocity-time history at three positions along pipe,	
	at $t_c=20t_{wp}$, by 2-Eqs model using tank	167
G-8	Predict fluid velocity-time history at three positions along pipe,	
	at $t_c=20t_{wp}$, by 4-Eqs model using tank	167

CO	N	וידע	EN	IT	2
	Ι.	7 1 1		•	. 7

COM	ENTS	
G-9	Predict fluid velocity-time history at three positions along pipe,	
	at t_c =40 t_{wp} , by2-Eqs model using tank	168
G-10	Predict fluid velocity-time history at three positions along pipe,	at
	t_c =40 t_{wp} , by4-Eqs model using tank	168
H-1	Predict structure velocity-time history at three positions along p	pipe,
	at $t_c = t_{wp}$ by 4-Eqs model, using tank	169
H-2	Predict structure velocity -time history at three positions along	pipe,
	at $t_c=2t_{wp}$, by 4-Eqs model using tank	169
H-3	Predict structure velocity-time history at three positions along p	pipe,
	at $t_c=10t_{wp}$, by 4-Eqs model, using pump	170
H-4	Predict Structure velocity -time history at three positions along	pipe,
	at $t_c=20t_{wp}$, by 4-Eqs model using pump	170
H-5	Predict structure velocity-time history at three positions along	pipe,
	at $t_c=40t_{wp}$, by 4-Eqs model with pump	171

LIST OF TABLES

Table	Title	Page		
No.				
2-1	Literature review of water hammer using both experimental and two			
	equations model (Historically arranged)	18		
2-2	Literature review of water hammer using both experimen	tal and four		
	equations Model (Historically arranged)	27-28		
4-1	Centrifugal pump specifications	81		
4-2	The H-Q tested values for the tested pump	82		
4-3	Tested pipe specifications	83		
4-4	Specifications of the pressure sensor	85		
4-5	Data logger specifications	86		
4-6	Sensor calibration data	88		
4-7	Calculated pressure and gauge pressure readings	92		
5-1	Specifications of the used pipe and fluid	96		
5-2	Comparison between two types of equations model	105		

NOMENCLATURE

- A Cross-sectional area of pipe (m^2)
- A_G Area of opening of a valve (m^2)
- a Wave speed of sound (m/s)
- a_1 , a_2 Pump characteristics curve constants
- b Ratio of pipe density to fluid density
- **B** Pipeline characteristics impedance B = a / gA
- $\mathbf{B}_{\mathbf{M}}$ Coefficient
- B_p Coefficient
- C⁺ Positive characteristic line
- C Negative characteristic line
- C_x Viscous damping coefficient $C_x = 2 m \omega \xi = 2 \xi A_p \sqrt{E \rho_p}$
- C_d Orifice discharge coefficient
- d Ratio of pipe radius to wall thickness
- **D** Inside pipe diameter (m)
- E Young's modulus of elasticity (N/m^2)
- e Thickness of pipe wall (m)
- f Friction factor

Pump operating effects on transient fluid flow العنوان:

> المؤلف الرئيسي: Draz, Ahmed Mohamed Mohamed

Saad Aldin, Mohamed Safwat, El Negiry, Emad Abd Ellatif, El مؤلفين آخرين:

Saadany, Hassan Mansour(Super., Assist. Super)

2011 التاريخ الميلادي:

المنصورة موقع:

1 - 223الصفحات:

536606 رقم MD:

رسائل جامعية نوع المحتوى:

> **English** اللغة:

الدرجة العلمية: رسالة ماجستير

الحامعة: جامعة المنصورة

كلية الهندسة الكلية:

> الدولة: مصر

Dissertations قواعد المعلومات:

الهندسة الميكانيكية، السريان الانتقالي مواضيع:

https://search.mandumah.com/Record/536606 رابط:

© 2020 دار المنظومة. جميع الحقوق محفوظة.

ت ---- در المسود المسيح المحول للمطوعة . هذه المادة متاحة بناء على الإتفاق الموقع مع أصحاب حقوق النشر، علما أن جميع حقوق النشر محفوظة. يمكنك تحميل أو طباعة هذه المادة للاستخدام الشخصي فقط، ويمنع النسخ أو التحويل أو النشر عبر أي وسيلة (مثل مواقع الانترنت أو البريد الالكتروني) دون تصريح خطي من أصحاب حقوق النشر أو دار المنظومة.

جامعة المنصورة_ كلية الهندسة قسم هندسة القوى الميكانيكية

تأثير تشغيل المضخة على سريان الانتقالي للمائع

رسالة مقدمة للحصول على درجة الماجستير في هندسة القوى الميكانيكية

مقدمه من

المهندس/ احمد محمد عبد العال دراز بكالوريوس هندسة القوى الميكانيكية - جامعة المنصورة

تحت إشراف

ا.د./محمد صفوت سعد الدين أستاذ ورئيس قسم هندسة القوى الميكانيكية كلية الهندسة- جامعة المنصورة اد./حسن منصور السعدنى أستاذ متفرغ بقسم هندسة القوى الميكانيكية كلية الهندسة- جامعة المنصورة

د./عماد النجيرى مدرس بقسم هندسة القوى الميكانيكية كلية الهندسة حامعة المنصورة

جامعة المنصورة كلية الهندسة قسم هندسة القوى الميكانيكية

تأثير تشغيل المضخة على سريان الانتقالي للمائع

رسالة مقدمة للحصول على درجة الماجستير في هندسة القوى الميكانيكية

مقدمه من

المهندس/ احمد محمد محمد عبد العال دراز بكالوريوس هندسة القوى الميكانيكية - جامعة المنصورة

تحت إشراف

ا.د./محمد صفوت سعد الدين استاذ ورئيس قسم هندسة القوى الميكانيكية كلية الهندسة- جامعة المنصورة اد./حسن منصور السعدنى أستاذ متفرغ بقسم هندسة القوى الميكانيكية كلية الهندسة- جامعة المنصورة

د /عماد النجيرى مدرس بقسم هندسة القوى الميكانيكية كلية الهندسة - جامعة المنصورة

Mansoura University Faculty of Engineering Mechanical Power Engineering Department

PUMP OPERATING EFFECTS ON TRANSIENT FLUID FLOW

Submitted in Partial Fulfillment of Requirements for the Master of Science in Mechanical Power Engineering

By

Eng. Ahmed Mohamed Mohamed Draz
B. Sc. of Mechanical Power Engineering
Faculty of Engineering
Mansoura University

Under Supervision of

Prof. Dr. Hassan Mansour El Saadany Mechanical Power Engineering Dept. Faculty of Engineering Mansoura University Prof. Dr. Mohamed Safwat Saad El Din Head of Mechanical Power Engineering Dept. Faculty of Engineering Mansoura University

Dr. Emad Abd El Latif El Negiry Mechanical Power Engineering Dept. Faculty of Engineering Mansoura University